Expression of type IIA secretory phospholipase A2 inhibits cholesteryl ester transfer protein activity in transgenic mice.
نویسندگان
چکیده
OBJECTIVE High circulating levels of group IIA secretory phospholipase A2 (sPLA2-IIA) activity and mass are independent cardiovascular risk factors. Therefore, inhibition of sPLA2-IIA may be a target for the treatment of atherosclerotic cardiovascular disease. The present study evaluated the effects of sPLA2-IIA inhibition with varespladib acid in a novel mouse model, human apolipoprotein B (apoB)/human cholesteryl ester transfer protein (CETP)/human sPLA2-IIA triple transgenic mice (TTT) fed a Western-type diet. APPROACH AND RESULTS sPLA2-IIA expression increased atherosclerotic lesion formation in TTT compared with human apoB/human CETP double transgenic mice (P<0.01). Varespladib acid effectively inhibited plasma sPLA2-IIA activity. Surprisingly, however, administration of varespladib acid to TTT had no impact on atherosclerosis, which could be attributed to a proatherogenic plasma lipoprotein profile that appears in response to sPLA2-IIA inhibition because of increased plasma CETP activity. In the TTT model, sPLA2-IIA decreased CETP activity by reducing the acceptor properties of sPLA2-IIA-modified very low-density lipoproteins specifically because of a significantly lower apoE content. Increasing very low-density lipoprotein-apoE content by means of adenovirus-mediated gene transfer in sPLA2-IIA transgenic mice restored the acceptor properties for CETP. CONCLUSIONS These data show that in a humanized triple transgenic mouse model with hypercholesterolemia, sPLA2-IIA inhibition increases CETP activity via increasing the very low-density lipoprotein-apoE content, resulting in a proatherogenic lipoprotein profile.
منابع مشابه
Acute inflammation increases the selective uptake of HDL-cholesteryl esters into adrenals of mice overexpressing human secretory phospholipase A2
2 ABSTRACT The acute phase protein secretory phospholipase A2 (sPLA 2) influences the metabolism of high density lipoproteins (HDL). The adrenals are known to utilize HDL cholesterol as a source of sterols. The aim of the present study was to test the hypothesis that sPLA 2 enhances the selective uptake of HDL into the adrenals in response to acute inflammation as a possible physiologic role fo...
متن کاملAcute inflammation increases selective uptake of HDL cholesteryl esters into adrenals of mice overexpressing human sPLA2.
The acute-phase protein secretory phospholipase A2 (sPLA2) influences the metabolism of high-density lipoproteins (HDL). The adrenals are known to utilize HDL cholesterol as a source of sterols. The aim of the present study was to test the hypothesis that sPLA2 enhances the selective uptake of HDL into the adrenals in response to acute inflammation as a possible physiological role for the sPLA2...
متن کاملHDL modification by secretory phospholipase A(2) promotes scavenger receptor class B type I interaction and accelerates HDL catabolism.
During inflammatory states plasma levels of high density lipoprotein (HDL) cholesterol and apolipoprotein A-I (apoA-I) are reduced. Secretory group IIa phospholipase A(2) (sPLA(2)) is a cytokine-induced acute-phase enzyme associated with HDL. Transgenic mice overexpressing sPLA(2) have reduced HDL levels. Studies were performed to define the mechanism for the HDL reduction in these mice. HDL is...
متن کاملInhibitory effects of surfactant protein A on surfactant phospholipid hydrolysis by secreted phospholipases A2.
Hydrolysis of surfactant phospholipids by secreted phospholipases A(2) (sPLA(2)) contributes to surfactant dysfunction in acute respiratory distress syndrome. The present study demonstrates that sPLA(2)-IIA, sPLA(2)-V, and sPLA(2)-X efficiently hydrolyze surfactant phospholipids in vitro. In contrast, sPLA(2)-IIC, -IID, -IIE, and -IIF have no effect. Since purified surfactant protein A (SP-A) h...
متن کاملClinical and Population Studies HDL Remodeling During the Acute Phase Response
Objective—The purpose of this study was to examine the interactive action of serum amyloid A (SAA), group IIA secretory phospholipase A2 (sPLA2-IIA), and cholesteryl ester transfer protein (CETP) on HDL remodeling and cholesterol efflux during the acute phase (AP) response elicited in humans after cardiac surgery. Methods and Results—Plasma was collected from patients before (pre-AP), 24 hours ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 33 12 شماره
صفحات -
تاریخ انتشار 2013